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Is superoptimization viable for VM instruction sets?
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SUMMARY

The technique of superoptimization attempts to ensure true optimality of code (according to predefined
criteria) through an exhaustive search of all potentially viable programs. Implementations have demonstrated
that superoptimizers are capable of finding shorter programs than those hand-optimized for size by experts or
produced by conventional compilers. Superoptimizers have been developed for many machine architectures,
and used for diverse purposes including automating peephole optimization and binary translation of
instruction sets. The output of superoptimizers is frequently surprising to human experts and often takes
advantage of side-effects or obscure characteristics of the targeted hardware.
Virtual machines (VMs) are increasingly popular in implementations of programming languages, since they
can provide a common platform across heterogeneous hardware architectures. This paper examines whether
superoptimization could be a viable technique for VMs.
A superoptimizer for the Java Virtual Machine (JVM) has been developed and used to generate demonstrably
size-optimized versions of some simple mathematical functions, implemented in Java byte code. We have
shown that these versions are shorter than both implementations shipped with the Java SDK, and those
generated by the Java compiler. We also have some useful observations concerning techniques to allow
larger programs to be optimized in reasonable time by this approach.
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1. PREVIOUS WORK

Massalin [1] first proposed the superoptimizer, showing the generation of code for the mathematical
functions (amongst others) signum, max, min and abs with target code shorter than his
hand-crafted or compiler-generated versions. Five years later Granlund presented the GNU
Superoptimizer [2], also generating code for specific functions but for a wider range of machine
architectures. Later researchers variously addressed the DEC Alpha instruction set [3], the x86
[4, 5, 6] and SPARC V8 and MIPS R2000 [7].

Superoptimization has been used in a wide range of applications where particularly high quality
code is required, such as packet checksum calculation [3], peephole optimization [4], optimizing
switch statements in C compilers [6] and automated binary translation [5].

One fundamental task of a superoptimizer is to ensure that the generated programs behave
correctly, producing identical results to the original non-optimized implementations. Researchers
have tended to test probabilistically [1, 2, 4, 5] or use algebras and solvers; the latter to either
produce provably optimal programs in the first place [3, 7] or demonstrate the equivalence of a
generated solution [4, 5].
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2. METHOD

To investigate the viability of superoptimization for VMs, we:

1. Developed a superoptimizer for the Java Virtual Machine.
2. Used this superoptimizer to search for optimized versions of these mathematical functions, all

of which ship as part of the Java standard libraries and thus have reference implementations:

(a) Math.max, which returns the greater of its two integer arguments,
(b) Math.min, which returns the lesser of its two integer arguments,
(c) Math.abs, which returns the absolute value of its integer argument,
(d) Integer.signum, which returns -1 if its argument is negative, 1 if positive, and 0 if

0.

3. Verified the generated programs both by hand and by using probabilistic testing.
4. Compared the bytecode of generated programs to those from the Java standard library

implementations, and to the bytecode generated by the Java compiler from our own Java
language implementations of these functions.

For the purposes of this project we considered code size our metric for optimization: i.e. an
optimal program is the shortest possible one. This permitted clear comparison with the work of
Massalin (who used the same metric), and simplified our measurements of performance. Harder-
to-measure metrics like run-time can be dependent on many factors outside our control (address
of the program in memory, the physical environment, the way in which the JVM is implemented,
etc.), though we have included some performance measurements in our results based on the metrics
suggested by Maierhofer and Ertl [8].

We recognised that in an environment where bytecode is an intermediate representation (e.g.
executing Java using JIT compilation), bytecode size may be a poor proxy for target code size and
that longer bytecode programs could make the work of a JIT compiler easier. Nevertheless in other
environments such as those where bytecode is interpreted, reductions in the size of bytecode reduce
overall code size requirements.

We hoped to demonstrate the potential for superoptimization in VMs by generating shorter
versions of the target functions than exist in standard libraries or are generated by a compiler. A
failure to find shorter versions of any function also promised to be an interesting result, as it would
demonstrate the quality of existing implementations.

3. IMPLEMENTATION DETAILS

Our superoptimizer was implemented using the Clojure programming language [9], a LISP
implemented on the JVM which allows for in-process loading and execution of Java classes and
enjoys useful abstractions for lazy sequences and parallelisation. We used the ASM library for
generation of valid Java classes. This approach meant we could generate and test programs in-
process, speeding overall execution time.

The superoptimizer was run either on a Macbook Air laptop (for shorter searches) or on up to 18
Amazon EC2 high-CPU virtual machines (for longer searches). For the latter, we divided the search
space between n machines such that each machine m (for values of m from 0 to n− 1) started at
the mth entry in the search space and took every nth entry thereafter. We used the syslog4j package
[10] to log and aggregate results from the worker machines.

3.1. Limiting the search space

To constrain the search space and allow easier comparison between our efforts and those of earlier
researchers, we imposed these limitations on our generated programs:

• We permitted branching instructions like IFEQ, but only for forward branches, thus avoiding
loops and possibly non-terminating programs. Multiple branches per program were allowed.
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Figure 1. Search space of possible programs

• Only integer data types and operations were used (with the exception of BIPUSH, used to
place arbitrary byte constants onto the stack). Arrays and Java objects were not permitted.

• Generated programs could make no use of the constant pool.
• No unconditional branching was allowed, either by the use of GOTO or by conditional

branches following the push of a constant onto the operand stack.
• Programs were a maximum of 8 JVM instructions in length. This is one instruction less

than the Integer.signum() implementation bundled with the Java SDK, the longest
implementation of any of our target functions.

• Programs used a maximum of 4 local variables each. This allowed us to use the ILOAD_n
and ISTORE_n shortcut instructions and avoid ILOAD and ISTORE, which reference an
arbitrary number of variables. Given that we limited programs to 8 instructions, and in order
to be useful a variable must be referenced twice (one read and one write), this limitation has
no practical impact on our experiment.

• In searches for longer programs, we insisted that programs start by reading their argument
(ILOAD_0) and finish by returning a value (IRETURN).

• For these longer searches we also constrained the set of valid arguments to BIPUSH and
IINC to a subset of possible byte values: -127, 127, 0, positive and negative powers of 2 and
these last values less 1.

3.2. Pruning possibilities

An early version of our superoptimizer generated candidate sequences naively by taking the
cartesian product of all permitted instructions, much as Massalin had described in his original paper
[1]. It quickly became clear that exploring larger programs in this way would take far too long, and
that a method which considered every possibility, no matter how quickly, was inferior to a method
that was capable of pruning the search space.

To allow us to safely discard portions of the search space of possible programs, we modelled
it as a tree, with each node being a sequence of Java instructions. Children of node N contained
sequences prefixed by the sequence at N, thus a subset of the overall space might be as shown in
Figure 1.
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This tree was traversed to produce a lazy sequence of Java programs. Initially we tried traversing
the tree breadth-first, to guarantee that the first match found was the shortest. The memory
requirements of this approach proved overwhelming, so we switched to a depth-first search capped
to a depth equal to the maximum sequence length. Whilst this was a more efficient use of memory,
it allowed us to find a longer result before a shorter one, meaning our search had to complete before
we could draw conclusions from the results.

To minimise the number of programs considered, without removing potential best results, we
pruned the tree of possibilities using two types of filter. Fertility filters determined whether the
children of a given node in the tree can ever be valid. If a node was infertile, its instructions could
never be the prefix of an optimal JVM program, so we could avoid considering its children. Validity
filters determined whether a node was itself a program worth considering.

All filters were effectively performing static analysis on sequences of JVM instructions. Our
filters were derived from simple axioms concerning the programs we were generating in that
they must be optimized, valid sequences of Java instructions, and they must adhere to general
characteristics we identified of useful programs. Some filters (e.g. StackHeightFilter)
duplicated analysis done by the Java class verifier; others (e.g. InfluenceFilter) were
effectively stricter than the verifier. We established through measurement that it was more effective
to filter programs at this stage than to have the Java ClassLoader reject them later by throwing a
VerifierError.

The filters were:

1. InfluenceFilter ensured the output of a program depended on its input.
2. OperandStackFilter ensured a program did not underflow its operand stack.
3. RedundancyFilter ensured an acyclical program did not repeat a state during its

execution.
4. ReturnFilter ensured a program returned a value.
5. StackHeightFilter ensured that both destinations of a comparative branch had an equal

stack height (as mandated by the JVM).
6. VariableUseFilter checked that variables were neither wastefully written to (i.e.

without a subsequent read, or twice in succession without an intervening read), nor read before
being written to.

3.3. Checking for equivalence

We tested for equivalence in three ways:

1. Each target function was specified as a set of tests. Each test was itself a function which
executed the generated program, defining an input and expected output.

2. Sequences which passed these tests were manually checked either by hand or by writing
custom Java code to exercise the generated class.

3. In later experiments to find an optimized signum we submitted a large number (10,000+)
of random integers to the JDK Integer.signum implementation and to each of our
many generated classes and compared results. This would hopefully indicate any lack of
equivalence.

3.4. Critique of method

It is possible that some of the pruning techniques in our filters may have overly constrained the
search space. For instance, perhaps unconditional branches are more useful than we anticipated.

Our metric for optimization was code size, measured by the number of JVM instructions. In this
respect we were following previous researchers, but this metric is clearly not universally appropriate.
Furthermore, in programs containing branches, multiple paths may be possible, each with a different
number of instructions. We do not consider optimizing for the shortest paths, but rather for shortest
overall programs.

Our equivalence testing was relatively unsophisticated. None of our testing methods, save perhaps
careful manual examination, absolutely guaranteed equivalence. However we were comfortable that
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for the target functions being examined, the combination of testing methods demonstrates it. More
formal alternatives like abstract interpretation [11] may have a role to play here.

4. RESULTS

4.1. Generated programs

For each of Math.max and Math.min we found 4 programs, each 6 bytecode instructions long in
just over 6.5 hours (on an EC2 instance), of the following form (represented as a Clojure sequence
of opcode-argument pairs):

((:iload_1)(:iload_0)(:dup2)(:if_icmplt 2)(:swap)(:ireturn))

Variations read their arguments in reverse order and substituted IF_ICMPLTE for IF_ICMPLT.
For Math.abs, we found 4 results of length 5 in just over 1.5 hours (when run across 10 EC2

instances), of the form:

((:iload_0)(:dup)(:ifge 2)(:ineg)(:ireturn))

For Integer.signum, we found 64 results of length 8 in just under 27 hours, using 18 EC2
instances. These results differed in form and are discussed later.

4.2. Efficacy of filters

We pruned the search space with the set of filters outlined above and measured the effectiveness
of each of these filters. Figure 2 summarises the efficacy of each filter when run against a million
randomly generated programs of a given length. These need not have been valid Java programs: for
instance, the program (IRETURN) would be an invalid Java program, and nonetheless passed by
ReturnFilter.

The run-time cost of each of these filters was individually negligible; growth in overall run-time
for the superoptimizer was proportional to the growth in the size of the search space, so we felt
that detailed experiments to measure the performance of individual filters were not appropriate.
Programs far longer than those we tested are included in this filter analysis to demonstrate the likely
performance of the superoptimizer given more resources than we could amass.

5. ANALYSIS

5.1. Comparison of superoptimized functions to Java SDK versions

Tables I, II and III compare bytecode for the method as shipped in the JDK (Java version 1.6.0 33,
running on MacOS X), bytecode as generated by the Java compiler, and our superoptimized version
of each program. Program length does not include extraneous, debugging-related, or non-essential
operations. In cases where the superoptimizer produced many optimized programs of the same
length, we present only one here.

The Java SDK and manually compiled versions of Math.max differ slightly, the former
containing two branching JVM instructions and the latter a duplicated IRETURN; but the
superoptimized version uses a DUP2 instruction and a SWAP to save one instruction. This use of
JVM instructions which directly manipulate the stack with more sophisticated operations than PUSH
or POP recurs throughout the superoptimized programs.
Math.min proved so similar to Math.max as to be unworthy of further examination.
Whilst the Java SDK and manually compiled versions of Math.abs are effectively equivalent

(each loading their argument onto the stack at least twice, once for comparison and once for return),
the superoptimized function duplicates its argument and, having used one copy for the comparison,
returns the other after perhaps negating it, thus saving two operations.
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Figure 2. Performance of filters

Java SDK original Manually compiled Superoptimized

ILOAD 0
ILOAD 1
IF_ICMPLT L1
ILOAD 0
GOTO L2

L1 ILOAD 1
L2 IRETURN

ILOAD 0
ILOAD 1
IF_ICMPLE L1
ILOAD 0
IRETURN

L1 ILOAD 1
IRETURN

ILOAD_1
ILOAD_0
DUP2
IF_ICMPLT L1
SWAP

L1 IRETURN

Table I. Math.max

Java SDK original Manually compiled Superoptimized

ILOAD 0
IFGE L1
ILOAD 0
INEG
GOTO L2

L1 ILOAD 0
L2 IRETURN

ILOAD 0
IFLE L1
ILOAD 0
IRETURN

L1 ILOAD 0
INEG
IRETURN

ILOAD_0
DUP
IFGE L1
INEG

L1 IRETURN

Table II. Math.abs
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Java SDK original Manually compiled Superoptimized

ILOAD 0
BIPUSH 31
ISHR
ILOAD 0
INEG
BIPUSH 31
IUSHR
IOR
IRETURN

ILOAD 0
IFLE L1
ICONST_1
IRETURN

L1 ILOAD 0
IFGE L2
ICONST_M1
IRETURN

L2 ICONST_0
IRETURN

ILOAD_0
DUP
IFEQ L1
ICONST_1
DUP_X1
IF_ICMPGE L2

L1 INEG
L2 IRETURN

Table III. Integer.signum

The Java SDK implementation of Integer.signum has an elegance and the feeling of having
been hand-optimized by someone familiar with bitwise arithmetic. We idly wonder whether post-
Massalin, implementers felt the need to deliver a strongly optimized implementation. It uses
neither comparisons nor jumps and returns a result in 9 operations. The manually compiled
version is slightly longer, using a more traditional pair of comparisons. The superoptimized version
is an operation shorter than even the SDK-supplied version, and uses two branches and stack
manipulation (DUP and DUP_X1) to achieve the same effect. Note that the Java language does
not contain primitives which would map directly to these instructions.

Other superoptimized versions of the same length demonstrated different strategies, in general
substituting one of the two jumps for some bitwise arithmetic. For example:

ILOAD_0
ICONST_M1
ISHR
ILOAD_0
IFLE L1
ICONST_M1
ISUB

L1 IRETURN

Using the performance measurements suggested by Maierhofer and Ertl [8] the SDK version and
compiled versions of Math.max would each complete in 11 or 12 cycles (depending on input), and
the superoptimized version in 9 or 10. For Math.abs the SDK version would complete in 8 or 10
cycles (depending on input), the compiled version in 9 or 8 and the superoptimized version in 7. For
Integer.signum the SDK version would complete in 13 cycles, the compiled version in 6, 10
or 10 (depending on input) and the superoptimized version in 9 or 10.

5.2. Projections from the growth of the search space

Both the pruned and unpruned search space sizes for JVM programs grow exponentially with
instruction count. Our generated programs were longer than those found by previous researchers: 8
instructions for Integer.signum on the JVM compared to 4 on the 68020 by Massalin (though
the former includes two instructions to load the argument and one to return a value, which the
latter lacks). However comparison of instruction counts between different architectures gives little
indication of relative performance.

A RISC machine like the JVM offers a smaller number of possibilities for each operation, and its
programs tend to involve longer sequences of operations, making superoptimization searches harder.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



8 T. HUME AND D. WATSON

Program length in
JVM instructions

Search space size
(unpruned)

Search space size
(pruned)

Time to search in
seconds (pruned)

1 548 0 0.21
2 300852 1 2.27
3 166564052 777 74.31
4 N/A 476696 3961.71
5 N/A 272190286 2760453.88

Table IV. Search space for programs of 1–5 instructions

In its favour, the JVM performs most of its operations via the stack, which results in a drastically
reduced search space compared to a VM which uses direct access to memory.

5.3. Performance of filters as sequence length grows

Techniques to prune the search space allow slightly longer sequences to become tractable for
searching, but do not solve the underlying issue of exponential growth, as Table IV (for programs
with 1 argument) demonstrates.

Figure 2 shows that the most promising filters were those which could enforce the rules of
program correctness: ReturnFilter showed a near-constant performance whatever the length
of the program being searched for; the OperandStackFilter tended towards slightly higher
performance for programs of seven or more operations in length; and the VariableUseFilter
tended downwards slightly to near-constant performance.

The InfluenceFilter was interesting in that it appeared to peak in performance at program
of 9–10 operations, and then wane slowly. Two possible explanations for this are the diffusion of
influence within a program over the course of its instructions, and the simplistic way in which the
InfluenceFilter handled comparison instructions (proceeding forwards and thus not checking
the failed-comparison case).

Our early expectation was that the RedundancyFilter might be more useful than
measurements suggested. It would appear that only approximately a quarter of our randomly
generated Java programs more than 7 operations long contain any redundancy.

6. CONCLUSIONS

Pruning methods based on ensuring the validity of generated programs (OperandStackFilter,
VariableUseFilter, ReturnFilter) delivered significant and useful benefits, but their
efficacy tended towards a constant factor over time, whilst the search space grows exponentially.
To look for longer programs, it seems that we will require either further filters of similar or better
efficacy (which do not overlap with existing filters) and/or significantly more computing resources
on which to run the superoptimizer. Neither strategy scales to find arbitrary length optimized
programs.

As Massalin noted in his original paper: One of the most interesting results is not the
programs themselves, but a better understanding of the interrelations between arithmetic and
logical instructions. In many of the generated programs we saw JVM stack operations used in
an extremely elegant fashion to produce shorter programs (as with Math.max). In one example,
Integer.signum, we saw stack and arithmetic operations combined to produce non-intuitive
code which is shorter than the version shipped with the Java SDK, which appears to have been
hand-optimized by experts.

We discovered shorter implementations of mathematical functions than those produced by
a compiler or bundled with the Java SDK, for each of the non-trivial functions tested
including Integer.signum. Given that we examined every viable program shorter than the
implementations we have discovered, we can be sure that these implementations are optimal with
respect to size.
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The Massalin experiments [1] and their positive results have been replicated, we believe for the
first time, in the context of a VM. We therefore conclude that superoptimization is indeed a viable
approach for discovering optimal programs for virtual machines.

7. FURTHER WORK

It would be interesting to look at other cost functions besides length, such as execution time. This
would be hard to measure accurately, particularly for small programs; perhaps approaches involving
Aspect-Oriented Programming [12] or instrumentation of a customised JVM may prove suitable.

We suggest parallelisation, in two senses. Firstly, it may be a route for exploring a larger search
space of longer programs and secondly, the degree to which a program might be automatically
parallelised [13] would be a useful metric.

Finally, we would like to see the range of supported JVM instructions extended to allow for cyclic
code and operations on arrays, to allow superoptimization and discovery of simple search and sort
routines.
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